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A NOTE ON SCHLAFLI TYPE MODULAR EQUATIONS
OF COMPOSITE DEGREES

MOHANDAS

ABSTRACT. S. Ramanujan documented certain modular equations in
his recordings and many mathematicians employed them for the ex-
plicit calculation of theta functions, Weber-class invariants, Continueed
fractions and many more. Motivated by their work, in this paper, we
found few modular equations of the similar type.
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1. INTRODUCTION, NOTATIONS AND DEFINITIONS

S. Ramanujan in his notebook [7][5, pp. 204-237], documented many mod-
ular equations. For example,

let )
) _ f(=)
E e B Ty T
then
5 P\ 3 0\?
ra+pe=(0) +(5)
where
f(=9) = (¢ Q)0 = H(l —q"), lq| < 1.
n=1

After the publication of [5], many Mathematicians, developed the modular
equation of the above type and employed them for the evaluation of theta
function, Weber-class invariants, continued fractions and many more. For
the wonderful work one may refer [1, 2, 3, 8, 9, 11, 12]. Motivated by the
above work, in this paper, we obtain modular equations of the similar type.
All through the article, we shall employ the classic g-notation. The g-shifted
factorial for |¢| < 1, is specified as

oo

(@3 @)oo == [ (1 —2q" ).

n=1
If |zy| < 1, theta function in Ramanujan’s general form is declared as follows:

oo

f(x,y) — Z mn(n+l)/22yn(n—l)/2.

n=—oo
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By Jacobi’s triple product identity [[4], p.35], we have

The essential special cases of f(x,y) [4, p.36], are

¢(q) == f(a,9) Z 0" = (A4 A%

_ n(n+1)/2 _ )go
¥(q) = fla,q Zq 7((1 2
f(=q) = f(=q,=¢*) = > (=1)"¢"®"" V2 = (g;9)

For any complex number 7 it is very clear that if ¢ = €™ then f(—q) =

e~™7/12p(7), where 1(7) is the classical Dedekind n-function and is defined
as

7_) — q1/24 H(l _ qn) — 777,7'/12 H(l 2n7rz7' (7_) > 0.
n=1

We use the notation

X(@) : = (=4:¢%)oo
For convenience, we write f(—¢") = f,. The purpose of this article is to
prove some of strange P-@Q type modular equations of various degrees. Prior
to pursue to prove these identities, we select initially to analyze some mod-

ular equations and theta-function identities which will be useful in future.
A modular equation of degree n is an equation expressing o and (3 that is

induced by
11 11
F 1;1— F ;11—
n21<22 ; Oé) 21(22 5)
11 B 11 ’
F 1; F
21(2 27 7a) 21(2 2a 76)
where
[e.e]
. (a>n(b)n
QFl(Cl,b, C; Z) = Z WZ” ‘Z‘ <1
n=0
represents an ordinary hypergeometric function with
I'(a+k)
(a) = W-
Then, we say that § is of n'" degree over a and call the ratio
21
m:= —,
22

11 11
where 21 =9 F} <2, 5; 1;a> and 29 =2 F] <2, 2;1;ﬁ> .
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2. MAIN RESULTS
Theorem 2.1. If
_ (@)
o(q)o(q*)

then we have,

Ty <PQ * P1Q> * <4@ -

7
+PQ(Q P>2P3\ﬁ<\/g+\/§

2¢.4
and Q= ¢(q)

(PQ)* +

Proof. Let
o(q")
1 A, = .
@ "ol
From (1) and together with the interpretation of P and @, we have
Ag
2 P="2and Q=22
@) Land =4
Also, from [10, Theorem 4.2], we have
2 A
Al A == 4+ 2.
(3) 2+ —F AA, A +
Also, from (2) and (3), we find that
A2p V2 1
4 P+2
(W v AL

On solving (4) for A?2P/+/2. we deduce
5) AP k£ VEk2—4

vas o2
where .
k=—(P+2).
7 ( )
The identity (5) implies that
) v _ kil
AZp 2
On letting ¢ — ¢? in (3) and on solving for A Q/\f we have
) SO ALE
V2 2
and
®) V2 lFVEE—4
A2Q 2 ’
where .
l=—=(Q+2).

V2
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On multiplying (5) and (8), then employing (2) and after simplification, we
obtain

(9) P4—Q:kliz\/k2—4¢k\/12—4—\/k2—4\/z2—

On multiplying (6) and (7), then employing (2), we obtain

(10) APQ =Kl FIVE2 —4FkVI2 —4— k2 —4V/12 —

Adding (9) and (10), and then streamlining, we obtain

<PQ+—>—kl V2 —4y/12 — 4.

PQ
Squaring on both sides, substituting the values of k and [ and then stream-
lining, we obtain the desired result. O
Theorem 2.2. If
2,3 2(.6
_ ¢(Q)9 and Q= ¢"(q )9
?(9)9(q”) $(0)9(q”)

then we have,

9 )
P 10PQ + — | — (PQ)?
3 ((PQP+ ) - (o Q+PQ> (PQ)
P Q 2 2
3(PQ —1 P 12 =
<Q><QP+<Q>< >+ 0.
Proof. Let
o(q")
11 A, = .
(1) o(q®")
From (11) and together with the interpretation of P and @, we have
As
12 P = =
(12) Land Q=4
Also, from [10, Theorem 4.3], we have
2 Az ?
(13) A1A3+ A1A3 <A_1> + 3.
Also, from (12) and (13), we find that
A2P V3
14 P?
( ) \f + A2P \[( +3)

On solving (14) for A2P/+/3. we deduce
APkt VEk2 -4

1 =
(15) o L
where 1
k=—=(P?+3).
2Py
Also (15) implies
V3 kEVP2

(16)

A2P 2
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On changing ¢ — ¢ in (13) and in the similar manner, we deduce that

A2Q 1FVP—4

and
l 12—-4
(13 o=t
where )
_ L3
l_\/g(Q +3).

On multiplying (15) and (18), and employing (12) and after simplification,
we obtain

4
(19) P—Q:klil\/k2—4$k\/12—4—\/k2—4\/l2—
On multiplying (16) and (17), then employing (12), we obtain
(20) APQ =Kl FIVE2 —4FkVI2 —4— k2 —4/12 —

Adding (19) and (20), and then streamlining, we obtain

(PQ+—>—kl V2 —4y/12 — 4.

PQ
Squaring on both sides, substituting the values of k and [ and then stream-
lining, we obtain the desired result. (I

Theorem 2.3. If

U(q?)
9 (q'®)

Y(q)
q¥(q?)

P = and Q=

then we have,

V2 (Po+ 55 <fP+Q+f> 2 (6+%)

PQ Q V2P Q P
1 P Q 5 1
2 ===+ = P =0
(0+g) - (G+7) - (Perrg) +e=0
Proof. Let
¥(q")
21 A, = ————7—.
(21) " (™)
From (21) and together with the interpretation of P and @, we have
Ay A
Also, from [6, Theorem 3.2], we have
A1 Ay 3
(23) A—2+A—1+2—A—1+A1~

On using (22) and (23), we obtain

Ay \/5_1< 1)'

(24) N
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On solving (24) for A1/+/3. we deduce

(25) éiki\/lﬁ—él
V3o 2 ’
where
1 1
k=—(P+=+2).
7 52)
Also (25) implies
(26) V3 _ kv -4
Ay 2 '
On changing ¢ — ¢ in (23) and in the similar manner, we deduce that
(27) é7l$\/lz—4
V3 2
and
(28) @_l$\/12—4
Ay 2 ’
where
1 1
l=—Q+ =+ 2> .
7o

On multiplying (25) and (28), and employing (22) and after simplification,
we obtain

4
(29) ﬁ:klil\/k2f4¢k\/1274f\/k274\/1274.
On multiplying (26) and (27), then employing (22), we obtain
(30) AP =Kl FIVE2 —AF V2 —4— k2 —4/12 — 4.

Adding (29) and (30), and then streamlining, we obtain

2(P+;)kl—\/k24\/l24.

Squaring on both sides, substituting the values of k and [ and then stream-
lining, we obtain the desired result. O

Theorem 2.4. If

_ appfifes _ fofso
F=q faf13 and @ qf4f26’

then we have,

vt (1 70) (591

JGRONGREEE
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Proof. Let
(31) A, = nf B
a2 fizn
From (31) and together with the interpretation of P and @, we have
A
(32) P="landQ==22
Ao Ay

Also, from [10, Theorem 4.2], we have

13 Ao 3 Ay 3 Ay A
(33) A1A2+AA2 <A—1) +<A—2 —4 4 —4 i

Also, from (32) and (33), we find that

A1ds V13 1 < 31 4 )
34 + = P34+ — —4P— — ).
(39 V13 Ady - V13 p3 P
A1 A
On solving (34) for 122 we deduce
V13
A1A2 Kli\/k2—4
(35) = ;
V13 2
where
1 1 4
k= P34 —. —4P — =
V13 ( * pP3 P)

The identity (35) implies that

V13 kv -4

(36) A1Ay 2
On letting ¢ — ¢? in (33) and on solving for @, we have
V13

AsAy  IFVE -4
(37) =

V13 2
and
(38) VI3 IlF \/—

Ay Ay 2
where

(@ rgEeg)

On multiplying (35) and (38), then employing (32) and after simplification,

we obtain

(39) PiQ:k:lil\/k?f4¢k\/1274f\/k274\/l27

On multiplying (36) and (37), then employing (32), we obtain
(40) APQ =Kl FIVE2 —4FkVI2 —4— k2 —4/12 —

769



770

Mohandas

Adding (39) and (40), and then streamlining, we obtain

2 <PQ + L) —kl= VK2 — 412 — 4.

PQ
Squaring on both sides, substituting the values of k and [ and then stream-
lining, we obtain the desired result. O

Theorem 2.5. If

p_ J1fs0

_ o Jfaf100
=T fs and ©=

fafs0

then we have,
T4 + 16%3 — 24.7)2 + 16.7;1 + 4(2.’1)1/2 — .1'3/2 — .%'7/2)3}1/2 + 4(1}1/2 + .’1,'3/2 - 2$5/2)y5/2
— (z1 — x3)y3 +16(z1 + 23)y2 + 18 = 0,

where
In = (PQ) + W and Yn = <a) + (F) .
Proof. Let
fn
41 A, = .
4D q" f5n
From (41) and together with the interpretation of P and @, we have
Al A2
42 P=—and Q=—.
(42) 1, de=

Also, from [10, Theorem4.2], we have

25 (A:\® [Ar)° A\’ Ar\?

Also, from (42) and (43), we find that

Ay 5 1 51 s 4
(44) - +A1A25(P + 55 AP - 55 ).

On solving (44) for Aidy

. we deduce
A1Ay kK VE2 -4
(45) = )
5 2
where
1/ . 1 4
k== P+ = —4P?’ - — ).
5 ( + ps3 P2>
The identity (45) implies that
k+Vk?—4
(46) b .
A1 A 2

As A
On letting ¢ — ¢? in (33) and on solving for %, we have

A2A4 l + 2 -4
4 =
(47) 3 5
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and

5 IlFVIZ -4
(48) AsAy 2 '
where

<Q3+Q3 1Q°- Q2>

On multiplying (45) and (48), then employing (42) and after simplification,
we obtain

(49) APQ =Kl FIVE2 —4FkVI2 —4— k2 —4/12 -

On multiplying (46) and (47), then employing (42), we obtain
4

(50) P—Q:klil\/k2—4$k\/12—4—\/k2—4\/l2—

Adding (49) and (50), and then streamlining, we obtain

(PQ+ Q)kl V2 =412 — 4.

Squaring on both sides and then streamlining, we obtain

1 1
PQ? + —— — <PQ+ >+k2+12—2:0.
PO (pqy PQ
Finally, on substituting the values of k and [ in the atop identity and further
streamlining, we have the desired result. O
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